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A generalization of the Kearns texture factors is presented. Mathematical relationships are derived that
relate the generalized texture factors to other measures commonly used in quantitative texture analysis.
In addition, values of the generalized texture factors for random orientation texture, numerical bounds
for the texture factors, and estimates for experimental uncertainty are given. Kearns’ method for measur-
ing texture factors from h � 2h X-ray diffraction scans is extended for use in measuring higher order tex-
ture factors. A comparison of generalized texture factors measured through three common experimental
techniques is presented.
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1. Introduction

The Kearns texture factors are a widely used method for quan-
tifying texture information of hexagonal materials [1]. Their use is
especially prevalent in the nuclear industry, with the use of zirco-
nium-based alloys as structural materials and hafnium metal as a
thermal neutron poison. The texture factors provide a quantitative
way to assign volume fractions of crystallites with (typically) basal
poles aligned toward any single sample direction. In particular, for
three mutually orthogonal sample directions, the Kearns texture
factors necessarily sum to one. This facilitated Kearns’ further anal-
ysis, in which he used the texture factors in a simple averaging
scheme to compute the bulk thermal expansion behavior of Zirca-
loy [1].

The success of Kearns’ thermal expansion model (essentially the
same as the Reuss model, see e.g. [2]), as well as the intuitive nat-
ure of the texture factors, likely contributed to the further use of
the texture factors as a means for quantifying the texture of mate-
rials with hexagonal crystal structure. Additionally, Kearns showed
how to measure the texture factors using h � 2h X-ray diffraction
scans, an experimental technique which was more widely available
at the time than conventional pole figure analysis.

While the simplicity of representation provided by the Kearns
texture factors is appealing, it is clear that they contain very lim-
ited information about the true orientation texture of a material.
Anderson et al. [3] demonstrated that the texture factors are in fact
equivalent to the lowest order coefficients of a harmonic expansion
of the orientation distribution function [4].

In this document, we introduce a generalization of the Kearns
texture factors, motivated by the need for a more complete descrip-
tion of texture while retaining the elegance of Kearns’ original
work. We develop rigorous mathematical relationships between
ll rights reserved.
texture factors and harmonic coefficients of the orientation distri-
bution, and similarly relationships between the texture factors
and harmonic coefficients of pole figures and inverse pole figures.
We derive relationships between texture factors for different
reflecting poles. We also compute higher order texture factors for
random orientation texture, numerical bounds for the texture fac-
tors, and we discuss estimates for statistical uncertainty in mea-
surement. Finally, we discuss a comparison of generalized texture
factors measured through three common experimental techniques.
2. Background

2.1. Kearns texture factors

Kearns defined the texture factor f as a weighted average of the
basal pole figure intensity with respect to the sample normal direc-
tion. In particular, he defined1

f �
R p

0 Ið#Þ cos2 # sin#d#R p
0 Ið#Þ sin#d#

: ð1Þ

Here, I(#) is the average pole figure intensity at an angle # from the
sample normal. The function I(#) used by Kearns is equivalent to the
integral

R 2p
0 Iðu; #Þdu over the pole figure intensity I(u, #), which is

a function of both spherical angles.
Texture factors are typically measured in three orthogonal sam-

ple directions. For tubular material, measurements are most often
performed in the longitudinal, transverse, and radial directions. For
rolled sheet, the texture factors are usually measured in the rolling,
transverse, and normal directions. We adopt the notation used by
1 Note a slight departure from Kearns’ original notation. Additionally, to avoid
confusion regarding integration limits, we consider pole figures to be defined over the
entire unit sphere.
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2 The notation W* indicates the complex conjugate of W.
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Anderson et al. [3] and use the latter convention, whereby the tex-
ture factors are labeled fR, fT, and fN, respectively.

2.2. Relation to harmonic coefficients of the orientation distribution
function

While the texture factors are a convenient, intuitive way to
quantitatively describe the orientation texture of hexagonal mate-
rials, it is clear that a set of three numbers, only two of which are
independent, do not constitute a complete description of orienta-
tion texture. The expansion of the orientation distribution function
(ODF) in a series of generalized spherical harmonics is a common
way to provide a full characterization of texture [4]. If the texture
factors can be related to coefficients of the harmonic expansion of
the ODF, then we might answer the question of how much texture
information they represent. Recently, Anderson et al. [3] derived
expressions relating the texture factors to the harmonic coeffi-
cients of the generalized spherical harmonic expansion according
to Roe’s convention,

wðw; h;/Þ ¼
X1
l¼0

Xl

m¼�l

Xl

n¼�l

WlmnZlmnðcos hÞe�imwe�in/: ð2Þ

The ODF is written as w(w, h, /), and is a function of three Euler
angles; the reader is referred to Roe’s original article for more de-
tails [5]. The constants Wlmn are the harmonic coefficients, and
the function Zlmn(x) is called the augmented Jacobi polynomial. All
conventions for the generalized spherical harmonics used by Roe
are retained here. In particular, w(w, h, /) is normalized such that
its integral over the full range of Euler angles is one.

Recognizing the equivalence of the inner product of two unit
vectors and the cosine of the angle between them, a coordinate free
expression for the texture factor along any direction x0 can be
written as

f ¼
Z

A
qðxÞhx; x0i2dA; ð3Þ

where the integral is taken over the unit sphere and dA is the usual
invariant measure. Here, q(x) is the normalized basal pole figure
intensity, i.e.

qðxÞ ¼ I0001ðxÞ
Z

A
I0001ðxÞdA

�
: ð4Þ

Anderson et al. showed that, in spherical coordinates where
x = x(u, #) and dA = sin#d#du,

fR ¼
Z 2p

0

Z p

0
qðu; #Þ cos2 u sin3

#d#du ð5Þ

fT ¼
Z 2p

0

Z p

0
qðu; #Þ sin2 u sin3

#d#du ð6Þ

fN ¼
Z 2p

0

Z p

0
qðu; #Þ cos2 # sin#d#du: ð7Þ

For basal poles, the normalized pole figure intensity is related to the
ODF in a simple way,

qðu; #Þ ¼
Z 2p

0
wðu; #;/Þd/: ð8Þ

When combined, the above lead to the result

fR ¼
4p2

ffiffiffi
2
p

3
W000 �

4p2
ffiffiffiffiffiffi
10
p

15
W200 þ

4p2
ffiffiffiffiffiffi
15
p

15
ðW220 þW2�20Þ ð9Þ

fT ¼
4p2

ffiffiffi
2
p

3
W000 �

4p2
ffiffiffiffiffiffi
10
p

15
W200 �

4p2
ffiffiffiffiffiffi
15
p

15
ðW220 þW2�20Þ ð10Þ

fN ¼
4p2

ffiffiffi
2
p

3
W000 þ

8p2
ffiffiffiffiffiffi
10
p

15
W200: ð11Þ
Because W220 ¼W�
2�20, each texture factor is real, as expected. 2 Also

note that, under the assumption of orthotropic sample symmetry,
W220 ¼W2�20, and the above becomes a system of three linear equa-
tions in three unknowns, as shown by Anderson et al. [3]. Solving
for the harmonic coefficients gives

W000 ¼
ffiffiffi
2
p

8p2 ð12Þ

W200 ¼
ffiffiffiffiffiffi
10
p

16p2 ð3f N � 1Þ ð13Þ

W220 þW2�20 ¼
ffiffiffiffiffiffi
15
p

8p2 ðfR � fTÞ: ð14Þ

For materials with hexagonal crystal symmetry, the only nonzero
harmonic coefficients Wlmn with l 6 2 are those shown here. It is
then apparent that the texture factors represent the same texture
information as the low order harmonic coefficients of the ODF. In
the following section we discuss a generalization of the texture fac-
tors, which naturally leads to expressions for the higher order har-
monic coefficients.

3. Generalized texture factors

3.1. Definitions

The Kearns texture factor f may be generalized to higher order
texture factors f(k) by changing the weighting scheme used in (3),

f ðkÞ ¼
Z

A
qðxÞhx; x0ikdA; ð15Þ

where as above, x0 is a fixed direction in the sample coordinate sys-
tem. The generalized texture factors contain no useful information
for odd k, i.e. f(k) = 0, a result of the inversion symmetry inherent
in pole figure measurement. When k = 0, f(0) = 1 regardless of the
chosen sample direction because q(x) is normalized such that its
integral is unity. We therefore focus our attention on texture factors
with k P 2n, where n is an integer.

For the remainder of this section, it is assumed that q(x) repre-
sents the normalized basal pole figure intensity. This definition
leads to expressions for f(k),

f ðkÞR ¼
Z 2p

0

Z p

0
qðu; #Þ cosk u sinkþ1

#d#du ð16Þ

f ðkÞT ¼
Z 2p

0

Z p

0
qðu; #Þ sink u sinkþ1

#d#du ð17Þ

f ðkÞN ¼
Z 2p

0

Z p

0
qðu; #Þ cosk # sin#d#du: ð18Þ

The generalized texture factors with k = 2 (again, for basal pole
figures) correspond to the usual Kearns texture factors, and their
relation to the harmonic coefficients Wlmn of the orientation distri-
bution has been given in the previous section. For the particular
case k = 4, we evaluate the integrals above to find

f ð4ÞR ¼ 4p2
ffiffiffi
2
p

5
W000 �

8p2
ffiffiffiffiffiffi
10
p

35
W200 þ

8p2
ffiffiffiffiffiffi
15
p

35
ðW220 þW2�20Þ

þ 4p2
ffiffiffi
2
p

35
W400 �

8p2
ffiffiffi
5
p

105
ðW420 þW4�20Þ

þ 4p2
ffiffiffiffiffiffi
35
p

105
ðW440 þW4�40Þ ð19Þ
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f ð4ÞT ¼ 4p2
ffiffiffi
2
p

5
W000 �

8p2
ffiffiffiffiffiffi
10
p

35
W200 �

8p2
ffiffiffiffiffiffi
15
p

35
ðW220 þW2�20Þ

þ 4p2
ffiffiffi
2
p

35
W400 þ

8p2
ffiffiffi
5
p

105
ðW420 þW4�20Þ

þ 4p2
ffiffiffiffiffiffi
35
p

105
ðW440 þW4�40Þ ð20Þ

and

f ð4ÞN ¼ 4p2
ffiffiffi
2
p

5
W000 þ

16p2
ffiffiffiffiffiffi
10
p

35
W200 þ

32p2
ffiffiffi
2
p

105
W400: ð21Þ

As above, all of the nonzero harmonic coefficients for hexagonal
crystal symmetry with l 6 4 appear in the preceding equations. This
result shows that the texture factors of order 4 are linear functions
of the harmonic coefficients with l 6 4. It happens that this result is
true for arbitrary k. The proof of this statement follows from the fact
that cosk# and sink# can both be represented as linear combinations
of the associated Legendre functions Pm

l ðcos#Þ with l 6 k. The
orthogonality of the associated Legendre functions on [0, p] guaran-
tees that only those spherical harmonics with l 6 k contribute to the
innermost integral in the definition of f(k).

Inverting the previous relations,

W400 ¼
3
ffiffiffi
2
p

64p2 35f ð4ÞN � 30f ð2ÞN þ 3
h i

ð22Þ

W420 þW4�20 ¼ �
3
ffiffiffi
5
p

16p2 7 f ð4ÞR � f ð4ÞT

� �
� 6 f ð2ÞR � f ð2ÞT

� �h i
ð23Þ

W440 þW4�40 ¼
3
ffiffiffiffiffiffi
35
p

32p2 4 f ð4ÞR þ f ð4ÞT

� �
� 3f ð4ÞN � 6 f ð2ÞR þ f ð2ÞT

� �
þ 3

h i
:

ð24Þ

For hexagonal materials, the measurement of the usual Kearns tex-
ture factors corresponding to the basal pole, along with a similar
measurement of f ð4ÞR ; f ð4ÞT , and f ð4ÞN , is therefore sufficient to determine
all nonzero harmonic coefficients of order l 6 4. This is significant in
that commonly used methods for approximating bulk polycrystal
properties, such as the Voigt–Reuss–Hill analysis for the elastic
stiffness or the thermal expansion tensors, require precisely this
texture information [6]. While additional harmonic coefficients
may be determined from texture factors of still higher order, we
note that the basal pole figure is limited to providing only informa-
tion about coefficients Wlmn with n = 0 because of the effective inte-
gration over the third Euler angle. When such coefficients are
desired, deriving the relationship between generalized texture fac-
tors and pole figures for other reflecting poles may provide a
solution.

At this point, the utility of the generalized texture factors is
likely to be unclear, as they provide no additional information
about the orientation distribution of a polycrystal beyond a subset
of the harmonic coefficients. This representation, however, lends
itself to some unique analysis. Like the usual Kearns texture fac-
tors, the generalized texture factors have a more intuitive interpre-
tation than do the coefficients of the harmonic expansion of the
ODF. Unlike harmonic coefficients, the generalized texture factors
do not depend on a particular choice of convention for the Euler
angles or spherical harmonics. They then provide a much simpler
means of communicating numerical texture information. Finally,
the generalized texture factors may be computed quite naturally
using a trivial modification to Kearns’ original analysis of h � 2h
X-ray diffraction scan data. This allows harmonic coefficients of or-
der l > 2 to be derived from h � 2h scan data as described later.

3.2. Random orientation texture

In the case of random orientation texture, q(x) is a constant
equal to 1/(4p), and the value of the integral in (15) becomes inde-
pendent of the choice of sample direction. This means that, for
fixed k, the texture factors f(k) measured in all directions must be
equal. Without loss of generality, we compute f ðkÞN for the basal pole
figure,

f ðkÞN ¼
Z 2p

0

Z p

0
qðu; #Þ cosk # sin#d#du

¼ 1
2

Z p

0
cosk # sin#d# ¼ 1

1þ k
: ð25Þ

The same value is of course obtained for any other sample direc-
tions. Thus for random texture, f(2) = 1/3 in all sample directions
as originally demonstrated by Kearns, while the higher order tex-
ture factors satisfy f(4) = 1/5, f(6) = 1/7, etc. This result also applies
to texture factors corresponding to poles other than the basal pole.
This fact may be derived from the general relationship between
pole figures and orientation distribution functions (see Eq. (13) of
[5]), but may also be surmised from the fact that the assignment
of the crystal coordinate system may be chosen arbitrarily.

3.3. Bounds for the generalized texture factors

Bounds for the generalized texture factors may be derived as
follows. The normalized pole figure intensity q(u, #) is a probabil-
ity density function and therefore takes only positive real values.
Likewise, the inner product hx, x0i in the definition of f(k) is positive
for even k, and so it follows that the integral of their product is
non-negative. We also have that hx, x0i 6 1, and so

f ðkÞ ¼
Z

A
qðxÞhx; x0ikdA 6

Z
A

qðxÞ � 1dA ¼ 1: ð26Þ

It then follows that, for any arbitrary sample direction x0,

0 6 f ðkÞ 6 1: ð27Þ

These bounds are attainable, i.e. f(k) ? 1 as q(x) ? d(x � x0), and
f(k) ? 0 as qðxÞ ! d x� x0?

� �
, where x0? is any direction perpendicular

to x0.

3.4. Relation to harmonic expansion of the orientation distribution
function

We now derive a general relationship between texture factors
and the harmonic coefficients of the ODF. Recall the definition of
the texture factor of order k along the sample z axis:

f ðkÞ ¼
Z

A
qðu; #Þ cosk #dA: ð28Þ

Note that it has not been assumed that this is the usual sample
‘‘normal direction,’’ but rather that in the sample coordinate system
used, the texture factor is measured for the z sample direction. It is
also unnecessary at this stage to choose a particular pole. Next we
consider the Legendre polynomials Pl(cosh) of even order, the first
few of which are given by

P0ðcos hÞ ¼ 1 ð29Þ

P2ðcos hÞ ¼ 1
2
ð3 cos2 h� 1Þ ð30Þ

P4ðcos hÞ ¼ 1
8
ð35 cos4 h� 30 cos2 hþ 3Þ ð31Þ

. . . :

Expressions for Legendre polynomials of higher order can be found
in a number of reference works, e.g. [7]. Now, with a slight abuse of
notation, we define a function Pl(f) on the set of generalized texture
factors, in analogy to the Legendre polynomials, such that in each
instance coskh is replaced by f(k), e.g.
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P0ðf Þ ¼ 1 ð32Þ

P2ðf Þ ¼
1
2
ð3f ð2Þ � 1Þ ð33Þ

P4ðf Þ ¼
1
8

35f ð4Þ � 30f ð2Þ þ 3
� �

ð34Þ

. . . :

We then combine this with the definition (15) to get

Plðf Þ ¼
Z

A
qðu; #ÞPlðcos#ÞdA: ð35Þ

From the definition of the augmented Jacobi polynomial [5],

Zl00ðcos#Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

2

r
Plðcos#Þ; ð36Þ

and the orthonormality of the spherical harmonics, it may be shown
that

Plðf Þ ¼ 4p2 2
2lþ 1

� 	Xl

n¼�l

Wl0nZln0ðcos hpÞein/p : ð37Þ

The second equality follows from Roe’s formula relating the coeffi-
cients of the spherical harmonic expansion of pole figures to the
generalized spherical harmonic expansion of the orientation distri-
bution function (see Eq. (13) of [5]). Here, /p and hp are the spherical
coordinates for the pole. This expression is valid for arbitrary poles,
given that the texture factor is measured along the sample z direc-
tion, and generates a linear equation relating the texture factors to
the harmonic coefficients of the ODF.

The harmonic coefficients so determined, however, correspond
to the orientation distribution measured in a particular sample
coordinate system. This system may not agree with the our usual
choice (R ? x, T ? y, N ? z), and in any case, we want to determine
the relationship between the harmonic coefficients and the texture
factors measured in any number of directions. For example, when
the f(k) are determined from the normal plane, the harmonic coef-
ficients correspond to those of the orientation distribution function
in the ‘‘standard’’ sample coordinate system. However, when the
texture factor is measured for another plane, the coefficients corre-
spond to the orientation distribution measured in a sample coordi-
nate system rotated with respect to the standard system. It can be
shown that the harmonic coefficients W 0

lmn of the orientation dis-
tribution function, given in some rotated sample coordinate sys-
tem, may be related to the harmonic coefficients Wlmn in the
standard sample coordinate system by

W 0
lmn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2lþ 1

r Xl

r¼�l

WlrnZlmrðcos hsÞeimws eir/s ; ð38Þ

where the rotated coordinate system is related to the standard sys-
tem through a rotation parameterized by the Euler angles ws, hs, /s.
Inserting this into the previous equation and swapping indices, we
have the general result

Plðf Þ ¼ 4p2 2
2lþ 1

� 	3=2 Xl

m¼�l

Xl

n¼�l

WlmnZl0mðcos hsÞeim/s Zln0ðcos hpÞein/p :

ð39Þ

This expression relates a linear combination of texture factors to the
harmonic coefficients of the ODF. It is completely general, in that it
is valid for arbitrary poles as well as arbitrary sample directions.
The spherical angles for the pole (/p, hp) are, of course, taken with
respect to the crystal coordinate system, while the angles (/s, hs)
are spherical coordinates for the direction in which the texture fac-
tors are measured, taken with respect to sample coordinates. This
expression generalizes the result of Anderson et al. [3] for the usual
texture factors, as well as the result derived above for the case k = 4.
3.5. Relation to harmonic expansion of pole figures and inverse pole
figures

It is also common to express pole figures or inverse pole figures
by spherical harmonic expansion,

qðu; #Þ ¼
X1
l¼0

Xl

m¼�l

Q lmPm
l ðcos#Þe�imu; ð40Þ

where Pm
l ðcos#Þ, the associated Legendre function, is normalized

according to Roe’s convention, which implies Pm
l ðxÞ ¼ Zlm0ðxÞ [5].

Roe’s solution to the pole figure inversion problem,

Qlm ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2
2lþ 1

r Xl

n¼�l

WlmnPn
l ðcos hpÞein/p ; ð41Þ

combined with (39), gives

Plðf Þ ¼ 2p 2
2lþ 1

� 	Xl

m¼�l

Q lmPm
l ðcos hsÞeim/s : ð42Þ

This is the relation between the harmonic coefficients of the pole
figure and the generalized texture factors. Similarly, the inverse
pole figure may be expanded as

rðu; #Þ ¼
X1
l¼0

Xl

n¼�l

RlnPn
l ðcos#Þe�inu; ð43Þ

and is related to the harmonic coefficients of the ODF by [2]

Rln ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2
2lþ 1

r Xl

m¼�l

WlmnPm
l ðcos hsÞeim/s ; ð44Þ

which leads to

Plðf Þ ¼ 2p 2
2lþ 1

� 	Xl

n¼�l

RlnPn
l ðcos hpÞein/p : ð45Þ
3.6. Relationships between texture factors for different poles

Here we use the result (37) to derive a few relations between
texture factors for different poles. In particular, we are able to rig-
orously derive the relationships found by Kearns through more
heuristic arguments [8].

In the particular case l = 2, (37) reduces to

P2ðfhkilÞ ¼
4p2

ffiffiffiffiffiffi
10
p

5
W200P2ðcos hpÞ; ð46Þ

where the reflecting pole is labeled (hkil). For basal pole figures,
hp = 0 and so P2(coshp) = 1. Combining this with the previous
relationship,

P2ðfhkilÞ ¼ P2ðf0001ÞP2ðcos hpÞ: ð47Þ

Rearranging and simplifying gives

f ð2Þhkil ¼
1
2

f ð2Þ0001ð3 cos2 hp � 1Þ þ sin2 hp

h i
; ð48Þ

which is precisely the relationship suggested by Kearns (Eq. (6) of
[8]). Note that, while this relationship holds for arbitrary sample
directions, the texture factors all correspond to measurements
made in the same sample direction.

A similar relation may be derived for the case l = 4. Now we
have, in the general case,

P4ðf Þ ¼
4p2

ffiffiffi
2
p

3
W400P4ðcos hpÞ; ð49Þ



Table 1
Number of grains necessary to determine texture factor f(2) within a given numeric
interval for various confidence levels.

90% 95% 99%

f ± 0.1 16 25 49
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and substitution of P4(f0001) gives

P4ðfhkilÞ ¼ P4ðf0001ÞP4ðcos hpÞ; ð50Þ

which again holds for arbitrary sample directions.

f ± 0.05 81 121 225
f ± 0.01 2401 3364 5776
f ± 0.005 9604 13,456 23,409
f ± 0.001 240,100 341,056 589,824
f ± 0.0005 962,361 1,366,561 2,359,296
f ± 0.0001 24,078,649 34,187,409 59,043,856
3.7. Kearns factors and statistical uncertainty

In practical applications, it is useful to know the statistical
uncertainty associated with computing texture factors from a lim-
ited data set, i.e. a small number of grains. Here we note that each
texture factor f(k) may be considered as the expectation value of a
random variable nk � coskh, where h is the angle between the mea-
surement (sample) direction and the reflecting pole. The probabil-
ity density p(n) depends on the texture itself. Likewise the
uncertainty also depends on the texture, but it is possible to derive
a conservative estimate by assuming that random texture (uniform
p(n)) leads to the largest possible statistical variance. Making use of
(25), the variance is

r2 ¼
Z 1

�1

1
1þ k

� nk
� 	2

pðnÞdn ¼ k2

ð1þ kÞ2ð1þ 2kÞ
: ð51Þ

We can then compute confidence intervals for the texture factors as
[9]

f ðkÞ � za=2k

ð1þ kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2kÞN

p : ð52Þ

As a simple test, we computed the standard deviation r associated
with measuring f(k) from a set of N randomly generated orientations
(Fig. 1). The simulated data is in good agreement with the analytical
result. We also give, in tabulated form, the number of grains neces-
sary to compute f(2) within a given interval and confidence level
(Table 1).

In situations where (51) is overly conservative, e.g. for highly
textured samples, it is still possible to compute approximate error
bounds using a straightforward Monte Carlo calculation. In this ap-
proach, N orientations would be generated with probabilities dic-
tated by the measured texture, and the standard deviation in the
computed Kearns factors would be recorded. Note that, by using
this ‘‘bootstrapping’’ procedure, it is assumed that the measured
texture is a reasonable approximation of the true texture.
Fig. 1. Standard deviation r associated with texture factor f(2) for a random
orientation texture as a function of number of grains N. Points indicate averages
over 50 simulations, while the line indicates the analytical solution given in the
text.
3.8. Measurement of generalized texture factors by h � 2h X-ray
diffraction

Here we provide a brief overview of the method for computing
texture factors from h � 2h X-ray diffraction scans, as used by
Kearns [1]. The extension of the method to measuring generalized
texture factors involves a trivial modification of Kearns’ procedure.

Conventional h � 2h scans produce a discrete set of intensities
for given families of diffracting planes. In hexagonal materials,
these planes take the form ð10 �1lÞ, ð21 �3lÞ, and ð11 �2lÞ. Kearns de-
fined I1(#) as the intensity of the pole figure with fixed u = 0�. This
function is approximated by a linear interpolation of intensity data
from the family of ð10 �1lÞ poles. The functions I2(#) and I3(#) corre-
spond to the pole figure intensity at u = 19.1� and u = 30�, respec-
tively. These are similarly approximated by intensities from ð21 �3lÞ
and ð11 �2lÞ poles, respectively. The function I(#) appearing in
Kearns’ definition of the texture factor (1) is then determined by
a suitable interpolation using various combinations of I1, I2, and
I3, depending on the range of #, e.g. for zirconium, Kearns used
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Details regarding the interpolation scheme are given in the original
reference [1]. Note that the appropriate ranges depend on the c/a
ratio for the material under consideration.

Using this definition of I(#), Kearns then computed texture fac-
tors by numerical integration of (1) over discrete intervals. In doing
so, at each value of #, the intensity I(#), the weighting factor cos2#,
and the discrete area element sin#D# are all computed. Clearly, the
same procedure may be used to compute generalized texture fac-
tors of any order k by simply replacing the weighting factor cos2#

with cosk#.
While the numerical integration may easily be performed to

any accuracy desired, it should be noted that any method for inter-
polating the function I(#) from a discrete set of intensities will
introduce errors into the calculation that are difficult to quantify.
It is not known a priori whether Kearns’ method will be appropriate
for any particular specimen; it is quite possible that there are ori-
entation textures for which this method will produce poor results.
Our extension to the method suffers from the same limitation.
However, we will later demonstrate an instance where generalized
texture factors measured from h � 2h scans compare well with
those determined by other methods.

4. Experimental

4.1. Sample preparation

For X-ray diffraction experiments, two Zircaloy-4 specimens
measuring 0.5 in. � 0.5 in. � 0.125 in. were mounted, ground, and
polished using standard metallographic procedures. This surface
condition was found to be inadequate for EBSD analysis, so a third
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unmounted sample was prepared using an electropolishing
technique. The specimen was electropolished using a Struers
Lectropol unit with the following conditions: 20% perchloric acid,
80% methanol solution; 15 �C; 13–14 V operating voltage, 1.0–
1.2 A current. A 30 s polishing step was followed by a 45 s polish-
ing step for a total electropolishing time of 75 s. All samples were
nominally processed in the same way.

4.2. Electron backscatter diffraction (EBSD)

EBSD maps were obtained on an FEI XL-30 field emission gun
environmental scanning electron microscope (FEG-ESEM). Orienta-
tion maps of a total of 15 areas measuring 400 lm � 300 lm in
size distributed over the surface of the polished area were acquired
with an HKL EBSD system equipped with a Nordlys S camera and
using an accelerating voltage of 20 kV and spot size of 6 at
300� magnification. A pattern was acquired every 2 lm resulting
in 30,000 points per map. The average percentage of indexed
points within an individual scan was 92%, with standard deviation
of 1.1%. Only indexed points were used in the texture factor calcu-
lation; no noise correction procedures were used. The total number
of grains appearing in the combined scans was estimated to be
9114. The average grain size was measured as 15.2 lm.

For the present analysis, only the angle of the basal pole to the
sample normal is needed. Orientation data was collected and re-
ported as Euler angles according to Bunge [4]. With this conven-
tion, the generalized texture factor f(k) is simply the average
value of the cosine of the second Euler angle, U, taken over all mea-
sured points.

4.3. X-ray diffraction (XRD) pole figures

Texture measurements were performed using Cr Ka X-ray radi-
ation on a PANalytical high-resolution diffractometer (MRD)
equipped with parallel beam optics, Eulerian cradle, and a propor-
tional detector. Instrument verification was done by measuring the
(211) peak position from a randomly oriented tungsten powder at
y = 0� and y = +85�. The maximum peak shift was 0.006� 2h which
indicates that the instrument is properly aligned for texture
measurement. The samples were mounted onto the XYZ stage
using double sided tape. The samples were scanned from 30� to
106� 2h to determine precise peak positions. The (0002),
ð10 �10Þ; ð10 �11Þ; ð10 �12Þ; ð10 �13Þ, and ð11 �20Þ pole figures were
measured using a 5� � 5� grid up to a maximum tilt of 85�. A
5 mm beam was used and the samples were oscillated 5 mm in
the x and y directions during the measurement. Based on the grain
sizes observed with EBSD, it is estimated that about 9 � 105 grains
contributed to the pole figure measurement.
Table 2
Measured generalized texture factors (basal pole) along the sample normal direction. Left
X-ray pole figure measurements, and right column is derived from electron backscatter d

Sample f(2) f(4)

1 0.653 0.640 0.655 0.502
2 0.649 0.649 – 0.498

Table 3
Measured generalized texture factors (basal pole) along the sample normal direction. Left
X-ray pole figure measurements, and right column is derived from electron backscatter d

Sample f(2) f(4)

1 0.344 0.336 0.348 0.297 0.
2 0.341 0.347 – 0.294 0.
The pole figures were analyzed using XPert Texture software
from PANalytical. The scans were corrected for background and
defocusing. The ODF was calculated assuming hexagonal crystal
symmetry and orthorhombic sample symmetry using the texture
software by the WIMV method. Complete pole figures and inverse
pole figures were calculated from the ODF. Texture factors were
determined from the calculated pole figures by numerical
integration.

4.4. h � 2h X-ray diffraction

The samples were run from 30� to 148� 2h using Cu Ka X-ray
radiation on a PANalytical Multipurpose Diffractometer (MPD)
configured with a 1/4� divergence slit, 10 mm beam mask, a mul-
tipurpose stage, 1/2� anti-scatter slits, and an X’Celerator detector.
Instrument verification was done using LaB6 powder (NIST SRM
660a) by comparison of the observed diffraction peaks with the
reference pattern obtained from the ICDD database. Since the sam-
ple could not be spun during the analysis, the sample was rotated
90� and reanalyzed. The net intensities from the two diffraction
scans were then averaged. Taking into account the beam size and
penetration depth (20 lm), the number of grains contributing to
this analysis is estimated to be on the order of 2 � 105.

The h � 2h scans were analyzed using X’Pert HighScore software
from PANalytical, Inc. Briefly, the background was subtracted, the
pattern was smoothed, and the peaks were fit using a Pseudo-Voigt
profile function. The measured intensities were input into a
spreadsheet which then calculates the texture factor based on
the inverse pole figure method described above.

4.5. Comparison

The generalized texture factors (normal direction, basal pole)
were measured up to order 12 by the two X-ray diffraction meth-
ods and by EBSD, Tables 2 and 3. It can be seen that the texture fac-
tors derived from h � 2h scans and X-ray pole figures are in good
agreement, with typical variations for a given specimen on the or-
der of 2%. In fact, the variation associated with using different
methods appears to be of the same magnitude as the variation of
the two samples. We then conclude that each of the X-ray diffrac-
tion techniques gives equivalent results.

The results from EBSD compare well with the X-ray diffraction
methods. It can be seen that the generalized texture factors ob-
tained from EBSD are consistently higher than those from either
X-ray diffraction method, albeit only slightly. It is expected that
measurements performed on different locations of the same sam-
ple will exhibit slight variations in texture. The difference between
the texture factors calculated from EBSD scan data and the X-ray
column indicates the result of h � 2h scans, middle column are results derived from
iffraction.

f(6)

0.490 0.504 0.408 0.399 0.411
0.502 – 0.405 0.410 –

column indicates the result of h � 2h scans, middle column are results derived from
iffraction.

f(6)

290 0.301 0.261 0.254 0.265
300 – 0.258 0.263 –
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diffraction methods remains within the expected error bounds
based on the total number of grains and the analysis described
above.
5. Conclusions

We have developed a generalization of the Kearns texture
factors and have elaborated on a number of their properties. In
particular, we derived mathematical relationships between the
generalized texture factors and other measures commonly used
in quantitative texture analysis. We have also provided numerical
bounds for the texture factors and have discussed estimates for
experimental uncertainty. Kearns’ method for measuring texture
factors from h � 2h X-ray diffraction scans has been extended for
use in measuring higher order texture factors. Generalized texture
factors measured through three different experimental techniques
are shown to provide comparable information given the measure-
ment uncertainty.
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